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Abstract

Various stochastic models were developed to predict mortality rates over
the past two decade. Because of the COVID-19 Pandemic starting in 2019,
the prediction accuracy by each model can be influenced. In this paper the
Poisson splitting method is implemented to calibrate parameters in the Lee-
Carter(LC) Model and the Poisson Lee-Carter (PLC) Model respectively.
The methodology is applied to U.S. mortality data. Mortality rates fore-
casts are formed for the period 2019-2020 based on data from 2000-2018.
These forecasts are compared to the actual observed values to investigate
the implementation of the methodology and the quality of such mortality
models during the Pandemic.
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1 Introduction

Government agencies use mortality forecasts to decide the allocation of funds for gov-
ernment services, plan and develop health policy. Private industries, such as insurance
companies and life insurers, also need information from these forecasts to plan their
future programs and manage longevity risk.

One popular stochastic mortality model is introduced by Lee and Carter (1992). The
Lee-Carter (LC) model is widely used in the world because of its robustness among
diverse mortality models proposed in the literature. Singular value decomposition (SVD)
is applied to the log-force of mortality to estimate the parameters in the original model.
By using the first principal component of the log-mortality matrix, the estimation is
presented. The time component is predicted using a random walk model with drift
in their original paper. In practice, one of the most commonly adopted approaches to
predict mortality rates is the autoregressive integrated moving average (ARIMA) model.

Brillinger (1986) proposed that the number of deaths is a counting number so it
reasonably follows Poisson distribution. This leads Brouhns et al. (2002a,b) to extend
the LC model to the Poisson LC (PLC) model. To predict the mortality rate in the
PLC model, two different models are used. In one model, time is interpreted as a factor
(Brouhns et al., 2002a) and in the other one, Renshaw and Haberman (2003) modelled
time as a known covariate. Since the effect of calendar time is unknown ex ante to
represent in some functional form, the former model is believed to be preferable (Czado
et al., 2005). Thus ARIMA models are used most commonly in the PLC model as in
the LC model.

Brouhns et al. (2002a,b) assumed a Poisson distribution for deaths and calculated
the parameters by log-likelihood maximization. They also implemented a bootstrap
procedure for a Poisson log-bilinear formulation of the Lee-Carter model. Non-linear
regression and generalized linear model (GLM) is involved in recent approaches in the
LC model and the PLC model. However, these computations of prediction error for the
mortality forecasts does not account for the estimation error of the parameters involved
in both models. In this paper, we focus on one popular Machine Learning algorithm
introduced by Deprez et al. (2017) to model and forecast U.S. mortality. Poisson splitting
method is used as a complement to standard LC model and PLC model, rather than
a substitute. We initialize the mortality rates in Poisson splitting method with the
estimation rates obtained from the LC model and PLC model respectively, then apply
this Machine Learning approach on the data from 2000 to 2020. We use the data from
2000-2018 as the training set and the data from 2019-2020 as the test set to compare
the actual observed values with the forecasts.

The outline of this paper is as follows. Section 2 presents a brief description of the
LC model, the PLC model and the Poisson splitting method. In Section 3, we apply
the original LC and PLC methodology, then implement the Poisson splitting method to
U.S. males and females separately. Section 4 provides concluding remarks.
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2 Methodology

Lee and Carter (1992) proposed the LC model for the log-mortality rates log(µx,t):

log(µx,t) = αx + βxκt + εx,t, εx,t
iid∼ N(0, σ2

ε ), (2.1)

We use Dx,t as the number of deaths recorded at age group x during year group t, and
Ex,t as the corresponding number of persons exposed to risk, where µx,t =Dx,t/Ex,t is the
observed mortality rate of age group x during year group t, and x = 1,2, . . . ,M − 1,M
and t = 1,2, . . . , T − 1, T represent a set of M different age groups and T year groups,
respectively.
But parameters in (2.1) are invariant to the following linear transformation:

βx ↤
βx

d
, κt ↤ (κt − c)d, αx ↤ αx + βxc. (2.2)

for any d ∈ R/{0} and c ∈ R. In actuarial literature the following two constraints are
imposed to overcome the identification issue:

∑
x

βx = 1, ∑
t

κt = 0. (2.3)

The main advantage of applying (2.3) on (2.1) is that we can use the average log-
mortality rate over time for age group x and the first principal component of the log-
mortality matrix to estimate αx, βx and κt. Thus SVD is applied to the log-force of
mortality rate to estimate the parameters in the original model.
Various adjustments of κ̂t is proposed to reduce the difference between estimated and

observed log-mortality rates, it is shown that the random walk model with drift works
for most data set and it expresses as:

κt = κt−1 + θ + ωt, ωt
iid∼ N(0, σ2

ω). (2.4)

where θ is the drift parameter which models a linear trend and ωt is an error term. So
for the lth step-ahead forecast, the mean forecast value of κt+l is as follows:

κ̂t+l = κ̂t + lθ̂,

And the mean forecast of the log-mortality rate for year t + l is

log(µ̂x,t+l) = α̂x + β̂xκ̂t+l.

In the literature, two assumptions made commonly are that Dx,t are independent,
and each Dx,t has a Poisson distribution with a parameter proportional to Ex,t. The
force of mortality stays constant over each period (t, t + 1] is also assumed. Brouhns et
al. (2002a,b) kept the Lee-Carter log-bilinear form with the same constraints (2.3) and
replace (2.1) with:

Dx,t∼Poisson(Ex,tµx,t) with log(µx,t) = αx + βxκt. (2.5)
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Based on the PLC model (2.5), instead of applying the SVD method, they maximized
the log-likelihood function to estimate parameters αx, βx,andκt. Because of the bilinear
term βxκt in this model, Newton’s iterative updating scheme and weighted least squares
are used to get the MLE (Brouhns et al., 2002b); Renshaw and Haberman, 2003).
Each individual person is identified by its gender, its age, and the calendar year. We

assign each individual person p to a feature space = (g, x, t) ∈ χ = G×X ×T ∗ and feature
components are G = {female,male}, X = {0, . . . ,M} and T ∗ = {1, . . . , T}. Here x ∈ X
represents the age in years of the person, M ∈ N denotes the maximal possible age the
person can reach. The component T ⊂ N0 describes the calendar years considered. This
feature space could be extended by further feature components.
In order to check the goodness of the Poisson splitting method, we initialize model

assumptions with the rates µp obtained from the LC model and the PLC model, respec-
tively. We consider for p ∈ χ and rewrite (2.5) as follows:

Dp ∼ Poisson(ψ(p)dp), withψ(p) ≡ 1 and dp = Epµp. (2.6)

Note that dp represents the expected number of deaths. If the estimated mortality
rate µp underestimates the crude rate Dp/Ep the factor ψ(p) should be increased and
vice versa. As such, we need to calibrate the factor ψ(p) based on the chosen features
p ∈ χ. In addition, we also include birth cohorts, so we extend the feature space χ to
the feature space χ̄ = {(g, x, t, c = t − x) ∣ g ∈ G,x ∈X, t ∈ T ∗}, where c = t−x provides the
cohort.
We follow the steps of Poisson regression developed by Therneau et al. (2022) to apply

the Poisson splitting method with the splitting criterion Dparent − (Dleftson +Drightson).
The explicit choice of each split is based on an optimal improvement of a given loss
function.

3 Data Analysis

First, we use the LC model and the PLC model to estimate mortality rates based on
the U.S.A mortality data from 2000 to 2018. Then we apply Poisson splitting method
to the estimators of mortality rates by the LC model and the PLC model respectively
to obtain the new estimators. Second, we compare those estimators with the real U.S.A
mortality rates through the root mean squared logarithmic error (RMSLE) and the
root mean squared error (RMSE).

3.1 Data

The data employed in this study consists of USA mortality data obtained from the
Human Mortality Database. The exposures (Ep)p∈χ and the number of death (Dp)p∈χ
are the data we consider. The following results are based on the feature space χ̄ =
G ×X × T ∗ × C with feature components G = {female,male} , X = {0,1, . . . ,110} , T =
{2000,2001, . . . ,2018} and C = {1890,1891, . . . ,2018} .
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Maximal age 110 here represents ages of at least 110, and the set T consists of 19
years of observations. This results in 4218 data points in those 19 years of observations.

3.2 Results

We run the LC model and the PCL model to estimate the U.S.A mortality rates for
the female and the male respectively. Then these estimators are updated by Poisson
splitting method and are improved by classifying on the new feature space χ̃. Note that
between the space χ and the new space χ̃ we have a one-to-one correspondence.

Figure 1 and Figure 2 show the Poisson splitting tree which provides the calibration
to estimate ψ (p) , p ∈ χ̃. The birth cohorts added in the new feature space χ̃ requires
diagonal splits. It is clear that the estimators by the PLC model are classified into
further subgroups by Poisson splitting method.
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Figure 1: Poisson Splitting Trees of Estimators by the LC model for U.S.A 2000-2018
Mortality Rates
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Figure 2: Poisson Splitting Trees of Estimators by the PLC model for U.S.A 2000-2018
Mortality Rates

We apply the Poisson splitting method to estimate ψ(p). The estimators by the LC
model and the PLCmodel are used to define the new updated mortality rates respectively
as follows:

µ̂new(p) = ψ̂(p)µ̂LC(ω) or µ̂new(p) = ψ̂(p)µ̂PLC(ω), with ω ∈ χ and p ∈ χ̃. (3.1)

The tree algorithm improves the initialized mortality rates µ̂LC(ω) and µ̂PLC(ω) in
(3.1). We consider the relative changes △µ̂ to analyze the improvements, the relative
changes being measured as follows:

△µ̂ = µ̂new(p) − 1, with p ∈ χ̃.

So the relative change is the difference between the estimator of µ(p) and 1. In Figure
3 and Figure 4, we provide the relative changes by the LC model and the PLC model for
the U.S.A female mortality rate and the U.S.A male mortality rate from 2000 to 2018,
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respectively. Dark blue implies that the relative changes are negative and the estimators
by the LC model or PLC model overestimate the mortality rate in this period; light
blue implies that the relative changes are positive and the estimators by either model
underestimates the mortality rate. Figure 3 and Figure 4 show that the overestimation
happens when age increases for the female and the male, the underestimation happens
when age is small for both.

Figure 3: Relative Changes △µ̂ based on the LC model

Figure 4: Relative Changes △µ̂ based on the PLC model

Figure 5 and Figure 6 are logarithms of mortality rates for different ages and calendar
years 2019 and 2020. The red solid lines illustrate the crude mortality rates of the U.S.A
mortality data, the blue dashed lines illustrates the estimators by the LC model or the
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Figure 5: Logarithms of Mortality Rates for Males and Females based on the LC model
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Figure 6: Logarithms of Mortality Rates for Males and Females based on the PLC model

PLC model, and the black dots illustrate the tree updated estimators. We apply the LC
model and the PLC model to each gender g ∈ G separately. We aim at back-testing these
fitted mortality rates by using Machine Learning (ML) technique, splitting method to
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be precise.
By implementing (3.1), we find µ̂new(p) to predict the logarithms of mortality rates.

We compare the predicted mortality rates with the crude mortality rates in 2019 and
2020 for the female and the male in Figure 5 and Figure 6. It can be observed that the
PLC model, the LC model and the Poisson splitting method predict the logarithm of
mortality rates well because the forecasts are close to the real mortality rates in these
two year. However, the estimation by the Poisson splitting method seems closer to the
crude mortality rates compared with the estimation by both models. In addition, the
estimations by both the models and the Poisson splitting method in 2019 are better
than the estimations in 2020 for the female and the male.
To compare the performance of forecasting between either model and the Poisson

splitting method, we use two measures: RMSLE and RMSE. RMSLE and RMSE
are measured as follows:

RMSLE =
√
∑(log(µ̂x,t) − log(µx,t))2/N,

RMSE =
√
∑(µ̂x,t − µx,t)2/N,

where N is the number of predicted points, and in our data analysis N = 444. RMSLE
uses the logarithms of mortality rates to provide a relatively large amount of weight to
errors at young ages, while RMSE uses mortality rates directly to provide a relatively
large amount of weight to errors at older ages.

Table 1: RMSLE and RMSE by the LC model and the Poisson splitting method(ML)

RMSLE RMSE

Model Female Male Female Male

LC 0.1313603 0.1647777 0.0214511 0.0292743

ML 0.1054338 0.1336998 0.0218488 0.0307270

Table 2: RMSLE and RMSE by the PLC model and the Poisson splitting method(ML)

RMSLE RMSE

Model Female Male Female Male

PLC 0.1318182 0.1651776 0.0211829 0.0271793

ML 0.1052516 0.1333952 0.0211801 0.0277720

Table 1 shows the test results for the estimations by the original LC model and
the estimations improved by machine learning when µ̂new is forecasted using the LC
framework. By using the Poisson splitting method, the reduction of RMSLE is around
19% for males and 23% for females; while when considering RMSE, Poisson splitting
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method makes the error become larger. Table 2 presents the similar patter for RMSLE
and RMSE for the PLC model and the ML approach. So we can see that the Poisson
splitting method produces a significant improvement in forecasting with respect to the
standard LC model and PLC model at young ages, but this method does not improve
the estimations by both models at older ages during the Pandemic in the U.S.A.

4 Conclusions

We introduce the ML estimator and compare the forecasting qualities provided by the LC
model, the PLC model and this ML approach during the Pandemic, where the Poisson
splitting method is used as a support and not as substitute for those stochastic models.
We aim to update the predicted mortality rates provided by the LC model and the PLC
model and create a bridge between the ML approach and theory to help find a rational
explanation of the results during the Pandemic. All the analysis is carried out on the
calibration period: 2000-2018. The forecasting results for 2019-2020 are discussed.
We illustrate how the Poisson splitting method is applied to update forecasting of the

LC model and the PLC model. Our work is the extended work of Deprez et al. (2017),
which applied a regression tree boosting machine to improve the fitting of the LC model
and the Renshaw-Haberman model. We test the improvement in the forecasting quality
of the Poisson splitting method based on the LC model and the PLC model. Our results,
obtained from a data analysis structured on the U.S.A population during the Pandemic,
demonstrate that this ML approach produces significant improvements at young ages,
but it does not improve both models at older ages. Those results match the fact that
the old people have consistently accounted for a larger share of COVID-19 deaths than
the young people during the Pandemic.
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